
An Extended Hybrid Markovian and Interval Unit 

Commitment Considering Renewable Generation 

Uncertainties

Peter Luh1, Haipei Fan1, Khosrow Moslehi2, 

Xiaoming Feng2, Mikhail Bragin1, Yaowen Yu1, 

Chien-Ning Yu2 and Amir Mousavi2

1. University of Connecticut

2. ABB

16/23/2015



Introduction – Wind integration

2

• Is wind generation “free” beyond installation & maintenance?  

– Difficulties: Intermittent/uncertain nature of wind generation

• In Spain, an unprecedented decrease in wind generation in Feb. 

2012 is equivalent to the sudden down of 6 nuclear plants 

• 4 units not unusual ~ Hidden secret of intermittent renewables

1. http://breakingenergy.com/2015/03/19/wind-2000-gw-by-2030/ 
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Existing Approaches

• Deterministic Approach

– Uncertainties not explicitly considered

– Solutions not robust against realizations of wind generation

– Flexible ramping product is being investigated 

• Stochastic Programming

– Modeling wind generation by representative scenarios 

sampled from distributions

– Solution methodology

• Branch-and-cut

• Benders’ decomposition with branch-and-cut

• Lagrangian relaxation with branch-and-cut

– The number of scenarios: Too many or two few?  

36/23/2015



• Robust optimization 

– Uncertainties modeled by an uncertainty set, and the problem is 

optimized against the worst possible realization ~ Conservative 

– Min Max ~ Computationally challenging 

– Methodology: Benders’ decomposition with outer approximation

• Interval optimization [2], [3], [4]

– Wind generation modeled by closed intervals 

– Solutions to be feasible for extreme cases of system demand, 

transmission capacity, and ramp rate constraints ~ Conservative 

– Linear and efficient via interval arithmetic 

– Methodology: Benders’ decomposition with branch-and-cut

• Better ways?
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2. J. W. Chinneck and K. Ramadan, “Linear programming with interval coefficients,” Journal of the Operational 

Research Society, Vol. 51, No. 2, pp. 209-220, 2000.
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Outline

• Wind integration w/o transmission [5]

– Stochastic UC formulation – Generation based on wind states

– Problem solved by using branch-and-cut

• Wind integration considering transmission capacities [6]

– Markovian and interval formulation – Generation based on local 

state

– Numerical testing results via branch-and-cut 

• An extended hybrid Markovian and interval approach (with 

the ABB team)

– Generation of an isolated unit can depend on a remote wind farm

– Solved by Surrogate Lagrangian Relaxation and branch-and-cut 
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5. P. B. Luh, Y. Yu, B. Zhang, E. Litvinov, T. Zheng, F. Zhao, J. Zhao and C. Wang, “Grid Integration of Intermittent 

Wind Generation: a Markovian Approach,” IEEE Transactions on Smart Grid, Vol. 5, No. 2, March 2014. 

6. Y. Yu, P. B. Luh, E. Litvinov, T. Zheng, J. Zhao and F. Zhao, “Grid Integration of Distributed Wind Generation: 
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Stochastic Unit Commitment Formulation

• Modeling aggregate wind generation – A Markov chain  

– The state at a time instant summarizes the information of 

all the past in a probabilistic sense for reduced complexity

– Net system demand = System demand – wind generation

• Minimize the sum of expected energy and startup/no-load 

costs 

– s.t. system demand constraint for each state at every hour
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– Individual unit constraints 

• Generation capacity constraints for each state

• Time-coupling ramp rate constraints for any state transition 

whose probability is nonzero

• A linear mixed-integer optimization problem

• Solution methodology – Branch-and-cut
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Difficulties when considering transmission

• Transmission capacities – A major complication

– With congestion, wind generation cannot be aggregated

– Global state: A combination of nodal states ~ Too many

• What can be done? 

• Key ideas: Markov + interval-based optimization

– Local states: Wind generation state at the local node 

– Divide the generation of a unit into two components

• Local Markovian component: Depending on the local state 

• Interval component: To manage extreme combinations of non-

local states 

– Less conservative as compared to pure interval optimization

– Much simpler than pure Markov-based optimization
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• Generation capacity constraints

• Nodal injection

• System demand constraints ~ Sum of nodal injections = 0

– Sum of nodal injections = 0 for both min/max guarantee the 

satisfaction for in-between demand levels
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• Transmission: |Power flow| ≤ Transmission capacity

– A line flow depends on injections from many nodes and 

Generation Shift Factors (GSFs which can be + or -)

– Determine extreme flows from wind uncertainties – contained in 

Markovian nodal injections – by considering signs of GSFs and 

extreme Markovian nodal injections 

• Ramp rate constraints

– For possible states, state transitions, and                  and
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• The objective function 

– With state probabilities and a few extreme realizations

– Want to approximate the expected cost of all realizations w/o 

much complexity

• Extremes only may not reflect the majority of realizations 

• Include a “typical realization” (e.g., the expected realization)

– A set of deterministic constraints

• Solution methodology – Branch-and-cut
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Example 1 – IEEE 30-bus with 2 wind farms

• Data of two wind sites from April to September in 2006 [7]

– Wind penetration level: 40% 

• W/o considering wind curtailment and load shedding

– 1,000 Monte Carlo simulation runs 
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7. The National Renewable Energy Laboratory, Eastern Wind Dataset, 2010, [Online].  Available: 

http://www.nrel.gov/electricity/transmission/eastern_wind_methodology.html.

Approach Deter. Interval Ours

Optimi-

zation

CPU time 2s 53s 1min53s

Cost (k$) 248.659 280.672 253.403

UC cost (k$) 89.461 67.715 65.216

Simula-

tion

E(Cost) 

(k$)
315.451 263.787 250.626

APE 21.173% 6.401% 1.108%

STD (k$) 74.058 33.117 34.613

– Our approach provides 5.25% 

lower simulation cost than 

pure interval optimization

– Our approach is the most 

accurate in the sense of 

smallest APE*

– Trade-off: Solution robustness

and conservativeness, modeling accuracy, and CPU time 

Absolute percentage error* = |Optimization cost – simulation cost| / simulation cost × 100%  

6/23/2015
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Outline

• Wind integration w/o transmission

• Wind integration with transmission capacity constraints 

– Can be conservative if a big unit does not have a local wind 

farm  Interval Approach

• An extended hybrid Markovian and interval approach 

– Generation of an isolated unit can depend on a remote wind 

farm

– Solved by a synergistic integration of Surrogate Lagrangian 

relaxation [8] and branch-and-cut [9]

– Numerical testing results
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Key Ideas

• Allow an isolated unit to depend on a remote wind farm

– Generation: A Markovian component + an interval 

component 

• Modifications in the formulation?  

– System Demand 

– Ramp rates 

– Transmission capacity ~ Requiring the coordination of a 

isolated unit with a remote wind farm at a different bus 

 More complicated 

 The Extended Formulation 

146/23/2015
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– Simplified extreme Markovian flows – Can be conservative

min𝑓𝑙
𝑀(𝑡) =  

𝑖:𝑎𝑙
𝑖>0

𝑖≠𝑘

[𝑎𝑙
𝑖 ∙ min
𝑛𝑖
𝑃𝑖,𝑛𝑖
𝑀 (𝑡)] +  

𝑖:𝑎𝑙
𝑖<0

𝑖≠𝑘

[𝑎𝑙
𝑖 ∙ max
𝑛𝑖
𝑃𝑖,𝑛𝑖
𝑀 𝑡 ]

+  

𝑘:𝑎𝑙
𝑘>0

[𝑎𝑙
𝑘 ∙ min
𝑛𝑘
𝑃𝑘,𝑛𝑘
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𝑘:𝑎𝑙
𝑘<0

[𝑎𝑙
𝑘 ∙ max
𝑛𝑘
𝑃𝑘,𝑛𝑘
𝑀 𝑡 ]

+  

𝑗:𝑎𝑙
𝑗
>0

[𝑎𝑙
𝑗
∙ max
𝑛𝑘
𝑃𝑗,𝑛𝑘
𝑀 (𝑡)] +  

𝑗:𝑎𝑙
𝑗
<0

[𝑎𝑙
𝑗
∙ min
𝑛𝑘
𝑃𝑗,𝑛𝑘
𝑀 𝑡 ]

nk
* for nodes k and j can be different, but can be derived 

– Interval flows

𝑓𝑙,𝑐
𝐼 𝑡 = 

𝑖

𝑎𝑙
𝑖 ∙ 𝑃𝑖,𝑐
𝐼 𝑡 + 

𝑗

𝑎𝑙
𝑗
∙ 𝑃𝑗,𝑐
𝐼 𝑡

I
l

f Interval flow has 2 

possible combinations 

denoted as c

k: remote wind farms

j: linked units

• How to solve the problem?  

 Decomposition and coordination of Lagrangian relaxation
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• Lagrangian

• Individual unit subproblems

• Dual problem
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• Standard subgradient methods 

require L to be fully optimized

– L is difficult to fully optimize 

–  can suffer from zigzagging 

– Convergence proof and step size 

require q* 6/23/2015



Surrogate Lagrangian Relaxation

• Develop a new method, prove convergence, and 

guarantee practical implementability

– Without fully optimizing the relaxed problem (s.t. the 

surrogate optimality condition) and without requiring q*

1)

2) 

• One possible example of k that satisfies conditions 1) 

and 2): 

• At convergence, the surrogate dual value approaches q*

~ valid lower bound on the feasible cost 

0
1
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Without requiring q*!
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Schematic of Surrogate Lagrangian Relaxation

Surrogate 

optimization

Relax system demand by using 

Lagrange multipliers 

Original problem

Construct a feasible 

solution, and compare 

with the best one

Yes

Solve one or a few subproblems, until 

the surrogate optimization condition is 

satisfied

Meet 

Stopping 

criteria?

No

Update multipliers

Construct a feasible 

solution every few 

iterations

How to solve 

subproblems? 
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Difficulties of Standard Branch-and-Cut

• Branch-and-cut (B&C) can suffer from slow 

convergence because 

– Facet-defining cuts and even valid inequalities that cut 

areas outside the convex hull are problem-dependent and 

are frequently difficult to obtain 

– When facet-defining cuts are not available, a large 

number of branching operations will be performed

– No “local” concept  Constraints associated with one 

subproblem are treated as global constraints and affect 

the entire problem
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Synergistic Combination with Branch-and-cut

• SLR relaxation and B&C are synergistically combined 

to simultaneously exploit separability and linearity:

– Relax coupling constraints (system demand/transmission)

– Solve a subproblem using branch-and-cut w/ warm start

• The complexity is drastically reduced 

– Update multiplies by SLR – convergence w/o q*

• Why is the new method effective?

– Complexity of the algorithm is lower than that of B&C 

– Convex hulls for a subproblem do not change

– Cuts for subproblems are effective

– Feasible solutions can be effectively obtained

20
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Implementation of SLR + Branch-and-Cut

• Testing system – IEEE 30-bus 41-branch 24-period

– Relax all coupling system demand and transmission capacity 

constraints

– Form individual unit subproblems s.t. unit-wise constraints

– Configurations: 10 wind farms, 10 co-located units, 2 non-

colocated cheap units

• Implementation – In CPLEX 12.6.0.0 on Dell Precision M4500

– SLR implemented using ILOG Script for OPL

• Flow control, load data, generate models, update multipliers, warm 

start … 

– Subproblems solved by the CPLEX using branch-and-cut

– Multipliers are initialized according to priority list

• System marginal costs for extreme and expected system demands 

timed the weights as those in the objective function
216/23/2015
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Unit # pmin pmax Offer price Start-up cost
Associated

wind farm

Co-located units

1 5 157 62.6 786.8 1

2 8 100 56.7 945.6 2

3 14 157 62.6 700 3

4 22 100 56.7 800 4

5 10 60 42.1 1000 5

6 3 157 62.6 850 6

7 15 100 56.7 950 7

8 10 80 41.1 1243.5 8

9 5 157 62.6 600 9

10 25 100 56.7 750 10

Non-co-located units

11 10 80 37.2 900 2

12 10 90 39 1000 8

Units’ characteristics

6/23/2015



Wind farms’ characteristics

• All wind farms are assumed to be identical for each level 

of wind penetration

• A penalty of $5000/MWh on wind curtailment is incurred 

beyond a certain threshold

– For example, for the 25% case, if 10 MW out of 20 MW 

available are not used, then penalty is incurred

23

Wind penetration level Pmax for wind farm

5% 4 MW

15% 12 MW

25% 20 MW

6/23/2015



Testing results

• Consider 5% wind penetration

24

Non-extended case Extended  case

Method SLR+B&C B&C SLR+B&C B&C

Lower bound (k$) 292,508.74 294516.13 291,740 295328.95

Feasible cost (k$) 314,411 N/A** 316,478 N/A

Gap 6.96% N/A 7.92% N/A

Clock 

time* (s)

Iterations 189
1200

310
1200

Heuristics 231 110

Wind Curtailment (k$) 0 N/A 0 N/A

Load Shedding (k$) 656.49 N/A 688.17 N/A

Clock time* : solving time + other time (13 iterations)

**: B&C cannot solve because of shortage of power from conventional generators 

...,2,1,30,1.0,
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Testing results

• Consider 15% wind penetration

25

Non-extended case Extended  case

Method SLR+B&C B&C SLR+B&C B&C

Lower bound (k$) 268,975 265,020.46 269,617 N/A**

Feasible cost (k$) 284,455 331,835.67 283,619 N/A

Gap 5.44% 20.14% 4.93% N/A

Clock 

time* (s)

Iterations 288
1200

257
N/A

Heuristics 12 43

Wind Curtailment (k$) 0 0 0 N/A

Load Shedding (k$) 6,376.07 1,243.68 3,522.8 N/A

Clock time* : solving time + other time (16 iterations)

**: CPLEX was out of memory and computer froze

...,2,1,30,1.0,
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1,
1

1 
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Testing results

• Consider 25% wind penetration

26

Non-extended case Extended  case

Method SLR+B&C B&C SLR+B&C B&C B&C

Lower bound (k$) 266,304 250,447.8 244,120 241,892.04 241,997

Feasible cost (k$) 267,379 312,028.4 258,026 1,766,826.7 253,726

Gap 0.4% 19.73% 5.83% 86.31% 4.62%

Clock 

time* (s)

Iterations 290
1,200

720 3,600

(1 hour)

12,890 

(3h35min)Heuristics 10 480

Wind Curtailment (k$) 0 0 25.3105 0.04

Load Shedding (k$) 4,151.33 2,522.75 2,857.89 1,074.4

Clock time* : solving time + other time (16 iterations)
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Conclusion

• An important but difficult issue with no practical solutions 

• A major breakthrough for effective grid integration of 

intermittent wind and solar, with key innovations:

– Markov processes as opposed to scenarios to model wind 

generation for reduced complexity

– Markov + interval-based optimization to overcome the 

complexity caused by transmission capacity constraints

– The extended approach further reduces the conservativeness 

• Opens a new and effective way to address stochastic 

problems w/o scenario analysis or over conservativeness

• The innovative SLR + B&C opens a new direction on 

solving large mixed-integer linear programming problems 
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